CRISPR

CRISPR Cas9 explained. CRISPR (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. is an RNA-guided gene-editing platform that makes use of a bacterially derived protein (Cas9) and a synthetic guide RNA to introduce a double strand break at a specific location within the genome.

Cas9 is an enzyme that snips DNA, and CRISPR is a collection of DNA sequences that tells Cas9 exactly where to snip.

Scientists use DNA origami to alter gene expression in plants

April 4, 2019

DNA origami could change the way we alter plants

new research reported from the lab of Markita Landry, a professor of chemical and biomolecular engineering at UC Berkeley, a team of scientists has taken an original approach of using DNA origami nanotechnology to slip through plant cell walls and graft small interfering RNA (siRNA) directly onto plant cells. Their research shows it is possible to directly silence genes in plants without damaging plant tissues, and without making any alterations to the plant’s genome.

Introducing a kinder, gentler way to blow holes in cells

March 29, 2019

NanoEP experiment

A new technique developed by University of California, Berkeley, nanomaterials scientists has overcome the overcome the obstacles to delivering macromolecules using inexpensive lab equipment to efficiently infuse large macromolecules into cells. Called nanopore-electroporation, or nanoEP, the technique gently creates fewer than a dozen tiny holes in each cell that are sufficient to let molecules into the cell without traumatizing it. The pores heal rapidly afterward. In tests, more than 95 percent of the cells survived the procedure. .

With nanotubes, genetic engineering in plants is easy-peasy

February 25, 2019

genetic engineering in plants just got easier and safer New research reported from the lab of Markita Landry announces scientists could make genetically engineering any type of plant—in particular, gene editing with CRISPR-Cas9—simple and quick. To deliver a gene, the researchers grafted it onto a carbon nanotube, which is tiny enough to slip easily through a plant’s tough cell wall. To date, most genetic engineering of plants is done by firing genes into the tissue—a process known as biolistics—or delivering genes via bacteria. Both are successful only a small percentage of the time, which is a major limitation for scientists seeking to create disease - or drought-resistant crops or to engineer plants so they’re more easily converted to biofuels.

Adding a 'switch' to Cas9 to make CRISPR gene editing safer

March 22, 2019

University of California, Berkeley, scientists developed new Cas9 variants that could make CRISPR safer. (kirstypargeter/iStock/Getty Images Plus/Getty Images)

One big challenge facing the development of CRISPR gene editing for use in humans is the fear that the Cas9 "scissors" used in the technology could cause unintended off-target effects. Researchers at the University of California, Berkeley, have come up with a potential solution: a “switch” mechanism that could keep the Cas9 enzyme turned off until it reaches its target site.

In a recent study co-authored by CRIPSR pioneer Jennifer Doudna and published in the journal Cell, the UC Berkeley team described how they used an engineering technique called circular permutation to create Cas9 variants, "ProCas9s," that allow CRISPR to be turned on only in the targeted cells.

Jennifer Doudna is optimistic about how CRISPR will continue to empower our biological understanding

February 28, 2019

Jennifer DoudnaIn this interview, Doudna argues for caution when contemplating changes to the human genome that could be passed down for generations. She remains a forceful advocate for the potential of CRISPR in basic research, as well as its medical and biotech applications. “I think when you understand how things work, you can apply them more effectively. And once you apply them, you invariably uncover things that you didn’t understand about the fundamental biology of that system,” Doudna said. “I love that kind of interplay.”

Meet scientist Markita Landry

February 13, 2019

Markita LandryIn this engaging article, meet Markita Landry, Assistant Professor of Chemical and Biomolecular Engineering, who runs the Landry Lab at UC Berkeley. Her lab works on developing nanomaterials to assist in the delivery of CRISPR-Cas9 systems in plants.

Scientists find new and smaller CRISPR gene editor: CasX

February 5, 2019

new gene-editing protein CasX announcedAccording to a newly published study in Nature, CasX is a potent and efficient gene editor in both bacteria and human cells. Its design is similar to Cas9 and its well-studied cousin, Cas12, but is different enough that it appears to have evolved in bacteria independently of the other Cas proteins. It can cut double-stranded DNA like Cas9, can bind to DNA to regulate genes, and it can be targeted to specific DNA sequences like other Cas proteins.

Freakonomics Radio interviews Jennifer Doudna: Evolution, Accelerated

June 14, 2017

Freakanomics RadioA breakthrough in genetic technology has given humans more power than ever to change nature. It could help eliminate hunger and disease; it could also lead to the sort of dystopia we used to only read about in sci-fi novels. So what happens next?

‘The Joy of the Discovery’: An Interview with Jennifer Doudna

January 24, 2019

Jennifer DoudnaJennifer Doudna was awarded the Pearl Meister Greengard Prize in October 2018, established by Nobel Laureate Paul Greengard and his wife, the artist Ursula von Rydingsvard, to give recognition to women scientists. The New York Review spoke with her before the award ceremony. “That there even is a prize like this one,” Doudna said, “is a sign that people are really beginning to value the contributions of women to science.”