Image of silicon wafers. Berkeley Lab scientists have developed “multielement ink” – a new semiconducting material that could enable a more sustainable approach to microelectronics manufacturing. Unlike silicon, multielement ink can be processed at room temperature. kynny/iStock
Semiconductors are the heart of almost every electronic device. Without semiconductors, our computers would not be able to process and retain data; and LED (light-emitting diode) lightbulbs would lose their ability to shine.
But semiconductor manufacturing requires a lot of energy. Forming semiconductor materials from sand (silicon oxide) consumes a significant amount of heat-intensive energy, at scorching temperatures of around 2,700 degrees Fahrenheit. And the process of purifying and assembling all the raw materials that go into making a semiconductor can take weeks if not months.
A new semiconducting material called "multielement ink" could make that process significantly less heat-intensive and more sustainable. Developed by researchers from Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, "multielement ink" is the first "high-entropy" semiconductor that can be processed at low temperature or room temperature. The breakthrough was recently reported in the journal Nature.
"The traditional way of making semiconductor devices is energy-intensive and one of the major sources of carbon emissions," said Peidong Yang, the senior author on the study. Yang is a senior faculty scientist in Berkeley Lab's Materials Sciences Division and professor of chemistry and materials science and engineering at UC Berkeley. "Our new method of making semiconductors could pave the way for a more sustainable semiconductor industry."