

The Messersmith Lab

Melody Ghaffari and Berwyn Phan 2022

What Are Biomaterials?

- Biomaterials are any material that has been engineered to interact with a biological system
- This lab uses biomaterials for regenerative medicine and adhesive applications

Regenerative Medicine

- Healing vs. Regeneration
 - Healing is the sealing of wounds/formation of scars
 - Regeneration is the replacement of differentiated tissue
- How the lab treats this:
 - Use a molecule drug called DPCA (pictured right) to induce regeneration in mammalian cells
 - DPCA upregulates HIF-1a which is correlated with regeneration
- Drug delivery
 - DPCA is attached to the end of a PEG (polyethylene glycol) molecule (1-3 per PEG)
 - DPCA is hydrophobic, PEG is hydrophilic

DPCA - pro-regenerative drug

Regenerative Medicine (cont.)

- P7D3 forms long, micelle-like fibers in water (see right \rightarrow)
 - Noncovalent interactions promote self-assembly
- Mechanical properties
 - Shear thinning, starts viscous but gets thinner
 - Weak attraction breaks apart under stress
- Drug release
 - Heat or stress causes the fibers to break apart and release the drug
 - Ideal for long-term release of DPCA

Adhesives and Mussel-Inspired Chemistry

- Mussels → small feet used to attach to rocks and each other
 - Build fibers with adhesive on the end
 - Can stick to almost anything and interact with nonpolar and polar

- Dopamine (DOPA) a bioinspired building block for surface coatings – is used to mimic this behavior
 - 2 OH groups, + amine
 - Also has a nonpolar region

Adhesives and Mussel-Inspired Chemistry (cont).

- DOPA spontaneously forms polymers upon submersion in a marine-like solution (pH 8.5 buffered), forming polyDOPA
 - Mimics the adhesive qualities of the mussels
- Applications
 - Simple controlled adhesive
 - Surgical adhesive
 - Works underwater too

Our Lab Experiences

Main Project We Followed

- Goal: Combine regenerative medicine research + adhesives to create drug delivery systems for the treatment of ulcerative colitis (UC)
 - Attach mussel-inspired polymer to the surface of a nanoparticle to adhere to the intestines and deliver DPCA.
- <u>Experiment:</u> Evaluate performance in mouse UC model
 - Dextran sodium sulfate used to cause damage to mouse intestine
 - Examine tissue damage and scarring

- Histology is the study of tissue structure
- Slice tissues and mount on slides, then stain them to look under a microscope
- H&E staining:
 - → Hematoxylin and Eosin → stain nucleus and proteins respectively
 - Helpful in allowing us to see the presence of immune cells

H&E stain (Layers are easier to see)

H&E Staining

Healthy Mouse

Muscle

Sick Mouse Colon

- More **immune cells** in sick submucosal space
- Epithelium disrupted (less goblet cells)

Masson Trichrome Staining

- Masson Trichrome is used to assess scar tissue formation by staining collagen
 - Collagen shows scarring
 - Hematoxylin, Aniline Blue, Acid Fuchsin
- Immune cells harder to spot, same space as collagen.

Scarred (fibrotic) tissue

Healthy Tissue with organized matrix

Image Processing

← Masson Trichrome of a tissue slice

Isolated collagen and contrast \rightarrow

 Only dyed pixels are highlighted to calculate the % of collagen vs a healthy sample

Microfluidic Devices

- Can be used to simulate biological environments at a **smaller scales**
 - High throughput
 - Less expensive
 - Biologically relevant nutrient: cell ratios and flow rates
- Our Project use chips with mucus-producing gut cells to determine nanoparticle adherence

(above) microfluidic device on glass slide (below) microscope image of chip channel + cells

- Silicon chips used to make channels on polymer
- PDMS is used for its biocompatibility
 - High viscosity, can be modified for various functions
 - **UV** activate, then cure with temperature
- Attach onto glass with plasma
 - Oxygen flooded into a chamber, then turned to plasma
 - Reacts with the PDMS, making it adhere to glass
- Treat chip, then adhere cells
 - \circ Flush with **laminin** \rightarrow
 - Cells adsorb onto the channels

Particle Analysis

- Microscope used to take image of fluorescent tags
- Enhance contrast and turn into B&W
- Set binary and parameters for detection
 - Detect only suitable darkness/particle size
- Software identifies particle count/area
- Example had 275 particles of 10+ pixel size

111111111111

Lab Pictures

TEM Machine

HPLC machine

TEM Machine

Outside of Lab Experiences

Group Activities!

BAMPFA Museum

San Francisco:)

More Group Activities!

Campanile trip

Great Laundry Experiences

Not good, not good at all

Foothill Cafeteria Food

Certainly was food

References

Chang, J., Amin, D., Latona, J., Heber-Katz, E., & Messersmith, P. B. (2019, May 8).
 Supramolecular polymer hydrogels for drug-induced tissue regeneration ... ACS Nano. Retrieved August 1, 2022, from https://pubs.acs.org/doi/10.1021/acsnano.9b00281

 Zhang Y;Strehin I;Bedelbaeva K;Gourevitch D;Clark L;Leferovich J;Messersmith PB;Heber-Katz E; (2015, June 3). *Drug-induced regeneration in adult mice*. Science translational medicine. Retrieved August 1, 2022, from https://pubmed.ncbi.nlm.nih.gov/26041709/

3. Lee, H., Delatorre, S. M., Miller, W. M., & Messersmith, P. B. (2015, June 3). *Mussel-inspired surface chemistry for multifunctional coatings*. Science Translational Medicine. Retrieved August 1, 2022, from https://www.science.org/doi/10.1126/science.1147241

Thanks for listening!

Any Questions?

